Ethiopa

An evidence-based approach to the evaluation of ethnoveterinary medicines against strongyle nematodes of equids

Citation

Laura Peachey, Gina L. Pinchbeck, Jacqui. B. Matthews, Faith A. Burden, Mulugeta Getachew, Claire Scantlebury, Jane Hodgkinson. March 2015. An evidence-based approach to the evaluation of ethnoveterinary medicines against strongyle nematodes of equids. Veterinary Parasitology.

Authors
Publication details
Publication date: 
25 March 2015
Abstract

Cyathostomins are the most important gastrointestinal nematode infecting equids. Their effective control is currently under threat due to widespread resistance to the broad spectrum anthelmintics licenced for use in equids. In response to similar resistance issues in other helminths, there has been increasing interest in alternative control strategies, such as bioactive plant compounds derived from traditional ethnoveterinary treatments. This study used an evidence-based approach to evaluate the potential use of plant extracts from the UK and Ethiopia to treat cyathostomins. Plants were shortlisted based on findings from a literature review and additionally, in Ethiopia, the results of a participatory rural appraisal (PRA) in the Oromia region of the country. Systematic selection criteria were applied to both groups to identify five Ethiopian and four UK plants for in vitro screening. These included Acacia nilotica (L.) Delile, Cucumis prophetarum L., Rumex abyssinicus Jacq., Vernonia amygdalina Delile. and Withania somnifera (L.) Dunal from Ethiopia and Allium sativum L. (garlic), Artemisia absinthium L., Chenopodium album L. and Zingiber officinale Roscoe. (ginger) from the UK. Plant material was collected, dried and milled prior to hydro-alcoholic extraction. Crude extracts were dissolved in distilled water (dH2O) and dimethyl sulfoxide (DMSO), serially diluted and screened for anthelmintic activity in the larval migration inhibition test (LMIT) and the egg hatch test (EHT). Repeated measures ANOVA was used to identify extracts that had a significant effect on larval migration and/or egg hatch, compared to non-treated controls. The median effective concentration (EC-50) for each extract was calculated using PROBIT analysis. Of the Ethiopian extracts A. nilotica, R. abyssinicus and C. prophetarum showed significant anthelmintic activity. Their lowest EC-50 values were 0.18 (Confidence interval (CI): 0.1-0.3), 1.1 (CI: 0.2-2.2) and 1.1 (CI: 0.9-1.4) mg/ml, respectively. All four UK extracts, A. sativum, C. album, Z. officinale and A. absinthium, showed significant anthelmintic activity. Their lowest EC-50 values were 1.1 (CI: 0.9-1.3), 2.3 (CI: 1.9-2.7) and 0.3 (CI: 0.2-0.4) mg/ml, respectively. Extract of A. absinthium had a relatively low efficacy and the data did not accurately fit a PROBIT model for the dose response relationship, thus an EC-50 value was not calculated. Differences in efficacy for each extract were noted, dependent on the assay and solvent used, highlighting the need for a systematic approach to the evaluation of bioactive plant compounds. This study has identified bioactive plant extracts from the UK and Ethiopia which have potential as anthelmintic forages or feed supplements in equids.

Online references

Field efficacy of praziquantel oral paste against naturally acquired equine cestodes in Ethiopia

Citation

Mulugeta Getachew, Giles T. Innocent, Christopher Proudman, Andrew F. Trawford, Feseha Gebreab, Stuart W. Reid, Faith A. Burden, Sandy Love. September 2012. Field efficacy of praziquantel oral paste against naturally acquired equine cestodes in Ethiopia. Parasitology Research.

Authors
Publication details
Publication date: 
22 September 2012
DOI number: 
DOI 10.1007/s00436-012-3117-1
Abstract

The efficacy of an oral formulation of praziquantel (Equitape, Horse paste, Fort Dodge) in the reduction of cestode egg counts and serum antibody level against Anoplocephala perfoliata was assessed in 44 donkeys under field conditions. The donkeys were confirmed both by faecal examination and serum antibody assessed by an enzymelinked immunosorbent assay to have natural infection with tapeworms. The donkeys were randomly allocated into treatment (n022) and control (n022) groups. The treatment group was treated with both praziquantel and ivermectin (Ivomec, Merial) at a dose rate of 1 mg/kg and 200 μg/kg, respectively while the control group was treated only with ivermectin. Faecal samples were collected before treatment (day-0) and 2, 6, 8, 12, and 16 weeks post-treatment while blood samples were collected before treatment and 8 and 16 weeks after treatment and analysed. The results of the study demonstrated that praziquantel paste was highly effective in reducing cestode eggs in donkeys and had an efficacy of more than 99 % until week 16 (day112). No cestode egg reappearance by 16 weeks post-treatment in any animal in the treatment group was observed while donkeys in the control group continued shedding cestode eggs. The immunological assay also showed a significant reduction in serum antibody level against A. perfoliata in treated donkeys compared to the control group (p00.0001). This marked decrease in serum antibody level indicates reduced risk of cestode-associated colic and other gastrointestinal disorders and clinical diseases. No adverse reactions or clinical effects were encountered in any animal within either group throughout the trial period.

Online references

The evaluation of African and UK bioactive plant extracts for the control of equid gastrointestinal nematodes

Citation

Laura Peachey, Gina L. Pinchbeck, Claire Scantlebury, Gebre Tefera, Mulugeta Getachew, D. Etana, Faith A. Burden, Andrew F. Trawford, Jacqui. B. Matthews, Jane Hodgkinson. The evaluation of African and UK bioactive plant extracts for the control of equid gastrointestinal nematodes. Presented at International Conference on Equine Infectious Diseases IX. (21 October - 26 October 2012). Kentucky, USA.

Authors
Presentation details
Date presented: 
Tuesday 23 October 2012
Abstract

In the developed world the control of equid gastrointestinal (GI) nematodes, in particular cyathostomins, is increasingly challenging due the threat of anthelmintic resistance. In developing countries such as Ethiopia despite high parasite burdens, access to genuine anthelmintic treatment is limited. In both situations there is a need for alternative treatment and management regimens for effective parasite control and consequently there has been increasing interest in the use of bioactive plant extracts (BPEs) [1]. This study identified candidate plants in the UK and Ethiopia and evaluated their in vitro efficacy against cyathostomin populations derived from donkeys. A participatory rural appraisal (PRA) approach was used to identify five ethnoveterinary medicines for use in donkeys in Ethiopia. In the UK three plants were identified following extensive review of literature citing efficacy against GI nematodes of other host species and two extracts were provided courtesy of Prof Jerzy Behnke, University of Nottingham. Hydro-alcoholic extraction of dried plant material was carried out for the eight extracts prior to reconstitution in both water and DMSO. Efficacy of each extract was evaluated by egg hatch assay (EHA) and larval migration assay (LMA) using eggs and larvae recovered from the faeces of donkeys at the Donkey Sanctuary, UK. Dose response curves were produced and ED-50 values were calculated using probit analysis. Of the five Ethiopian plant extracts tested, four showed efficacy in the EHA and/or LMA. The two most efficacious were Acacia nilotica and Rumex abyssinicus in the EHA with ED-50 values of 0.72mg/ml and 1.29mg/ml respectively. Of the five UK extracts four showed efficacy in the EHA and/or LMA. The two most efficacious were Carica papaya (papaya) in the LMA and Allium sativum (garlic) in the EHA with ED-50 values of 18.9µM and 0.65mg/ml respectively. The two BPEs most efficacious in vivo for Ethiopia and the UK are to be carried forward to in vivo trials. This study has demonstrated in vitro efficacy of nine plant extracts against cyathostomins. There is evidence in the literature that these plant extracts show efficacy both in vitro and in vivo against GI nematodes in other species. Therefore these results have identified potential alternatives to synthetic anthelmintics for the treatment of cyathostomins that require further investigation.

[1] Githiori JB, Athanasiadou S, Thamsborg SM. Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet Para 2006;139, 308–320.

Online references
Syndicate content